
International Journal of Information Technology and Knowledge Management
July-December 2009, Volume 2, No. 2, pp. 361-364

A CASE STUDY OF FAULT TOLERANT ROUTING MECHANISM FOR
TORUS EMBEDDED HYPERCUBE INTERCONNECTION NETWORK

FOR PARALLEL ARCHITECTURE

N. Gopalakrishna Kini*, M. Sathish Kumar** & Mruthyunjaya H. S.***

This paper describes a fault-tolerant routing mechanism to facilitate data routing in Torus embedded hypercube interconnection
network subject to node failures in parallel computing. It is shown that by only using feasible paths routing can be substantially
simplified. Though there are algorithms for fault tolerant communication in torus and hypercube networks, there exits no
efficient algorithm for the embedded architecture. We present an algorithm to provide an efficient fault tolerant routing
mechanism for a (2, 2, 8)-Torus embedded hypercube interconnection network.

Keywords: Hypercube Network, Torus Network, Embedded Network, Torus Embedded Hypercube Network, Fault Tolerance,
Fault List, Routing.

* Dept. of Computer Science and Engineering, Manipal Institute of
Technology (Manipal University), Manipal, Karnataka, INDIA
E-mail: ng.kini@manipal.edu

** School of EECS, Seoul National University, Seoul, SOUTH
KOREA. E-mail: mskuin@yahoo.com

*** Dept. of Electronics and Communication, Manipal Institute of
Technology (Manipal University), Manipal, Karnataka, INDIA
E-mail: mruthyu.hs@manipal.edu

1. INTRODUCTION

It is quite evident that fault tolerance in highly parallel
computers is important for achieving reliable and high
performance computing [1]-[3]. Fault tolerance is the ability
of an interconnection network to continue operating in
presence of single or multiple faulty nodes [4]. As the
network size scales up [11]-[13] the probability of processor
failure also increases. It is therefore essential to design fault
tolerant routing algorithms that allow to route messages
between non-faulty nodes in the presence of faulty
processors.

The hypercube network’s node degree grows
logarithmically with number of vertices making it difficult
to build scalable architectures [7]-[9]. On the other hand,
the torus network supports the scalability as all the nodes
are having constant node degree. A better network
performance is achieved by embedding the torus and
hypercube networks that will give rise to a Torus embedded
hypercube network. Such a combination results in a system
which can be implemented with small node degree and a
reduction in hardware cost per node. Also, a constant node
degree results in a system that is scalable without having to
modify the individual nodes [4]-[6].

Torus embedded hypercube network, when one or more
nodes fail, a large number of available links enable the fault

free nodes to continue communicating with other nodes.
We consider a (2, 2, 8)-torus embedded hypercube
interconnection network for demonstrating our algorithm.
Our algorithm gives the optimum path even in the presence
of single/multiple faulty nodes in the interconnection
network.

2. ARCHITECTURAL PROPERTIES OF TORUS EMBEDDED

HYPERCUBE NETWORK

In this section, a brief discussion on embedding of the torus
and the hypercube networks is done to obtain the torus
embedded hypercube network and more details on this can
be found in [4]-[6], [11], [12].

Let l × m be the size of several concurrent torus
networks and N be the number of nodes connected in the
hypercube. Nodes with identical positions in the torus
networks will form a group of N number of nodes and hence
the resultant torus embedded hypercube network having a
size of (l, m, N). The nodes in the network can be addressed
with three components; row number i and column number j
of torus appended with the address of node k of hypercube.
Hence, a (l, m, N)–torus embedded hypercube network will
have l × m × N number of nodes and a node will be addressed
as (i, j, k) where 0 ≤ i < l, 0 ≤ j < m and 0 ≤ k < N.

Combining the data routing functions of torus and
hypercube will provide with the routing functions of the
torus embedded hypercube [2], [11] as in (1)-(5).

T
h1

(i, j, k) = (i, (j + 1) mod m, k) (1)

T
h2

(i, j, k) = (i, (m + j – 1) mod m, k) (2)

T
h3

(i, j, k) = ((i + 1) mod l, j, k) (3)

T
h4

(i, j, k) = ((l + i – 1) mod l, j, k) (4)

��� �����	
�
�
����
�����������
���������

����
�������
�
������

COM6\D:\HARESH\11-JITKM

The ring connections of row/column of each torus are
not shown in Figure1 for simplicity. A wraparound
connection is done along each row/column if they have same
label as a completion of (2, 2, 8)-torus embedded hypercube
network.

3. FAULT TOLERANCE IN TORUS EMBEDDED HYPERCUBE

NETWORK

The algorithm developed is explained in this section. This
algorithm technique enable to formally prove that even with
multiple faulty nodes, the torus embedded hypercube
interconnection network can still route the data successfully.

Each node in torus embedded hypercube network is
labeled with an n-dimensional binary vector (x

1
x

2
... x

n–l
x

n
),

where x
i � (0, 1) for 1 ≤ i ≤ n. The neighboring nodes of a

node Z is different from Z in one bit with reference to their
binary representations. In the binary vector the initial bits
x

1
... x

i
and x

i+1
... x

j
are representing the row number and

column number respectively where i < j < n. Note that, for
the (2, 2, 8) network i = 1, j = 2 and n = 5 are considered.

In the initial phase of the algorithm, x
j+1

... x
n

bits are
taken into account by considering x

1
... x

i
x

i+1
... x

j
bits as don’t

care combinations. The source node presently referred to
as the current node which would like to communicate with
the destination will compare each bits of its address x

j+1
...

x
n
 starting from left most bit with the corresponding bits of

its destination node. If the bits are found to be same we
leave current node address as it is and move on to the very
next consecutive bit which is at the right of it. If the bits are
different then that bit in the current node is changed as that
of corresponding bit of destination node to derive a new
node.

Now this new node will become the current node for
further comparison. This is done till all the bits x

j+1
... x

n
are

processed. We assume that each processor has a fault list
for recording the faulty/nonfaulty status of its neighboring
nodes. The new node derived, if found in the fault list, will
be ignored; otherwise will be considered as current node
and the process of comparison will be continued from
thereon. As new nodes are encountered which is not in the
fault list, they will get added to the list of routing path. With
this a data routing path is discovered within the cube by
ignoring all the faulty nodes with respect to current node
[8]-[10].

In the second phase, x
1
...

x

i
x

i+ 1
...

x

j
 are taken into account

by considering x
j+1

... x
n

 as don’t care combinations. The
current node which is obtained from the previous phase will
now continue this process of comparison of bits of its
address starting from left with the corresponding bits of its
destination node. If the bits are found to be same we leave
current node address as it is and go ahead with the very
next consecutive bit.

If the bits are different then that bit in the current node
is changed as that of corresponding bit of destination node
to derive a new node. Now this new node will become the
current node for further comparisons. This is done till all
the bits in x

1
...

x

i
x

i+ 1
...x

j
 are processed. Again the new node

derived if found in the fault list will then be ignored;
otherwise considered as current node and the process of
comparison will continue. As new nodes are encountered
which are not in the fault list, they will be added to the list
of routing path. With this a data routing path is discovered
within the concurrent torus by ignoring all the faulty nodes
with respect to current node.

4. RESULTS AND DISCUSSION

Table 1 shows the result of the algorithm that has provided
the data routing paths in (2, 2, 8)–torus embedded hypercube
network. A routing between seven cases of random source
and destination nodes are considered for demonstration. An
efficient optimal routing path is established between them
with reference to the available links as in Figure 1 and

− − − + −=1 1 0 1 1 1 0(... ...) (... ...)
dC n d d n d d dT k k k k k k k k k (5)

for d = 0, 1, …, n–1 where k
j
 for (j = 0 to n–1) is the

binary representation of node address k and n = log
2
(N)

where N is the total number of nodes in the hypercube.

The address of individual node is represented by n-bit
binary vector. A link will exist between two nodes where
the addresses of these two nodes differ exactly by one bit
[7]. For a (2, 2, 8)-torus embedded hypercube network, a
node with a five bit address has its left most bit representing
row number, the next bit representing column number and
the remaining least significant bits representing the address
of a node in the hypercube as shown in Figure 1.

Figure 1: A (2, 2, 8)–Torus Embedded Hypercube Network

��
�������������
��������

���
�����������
�������
���
��������������	�
���������
����������������
���� ���

COM6\D:\HARESH\11-JITKM

In Table 2 we have considered a case with a source node
of address 00000 and a destination node of address 01111.
In this case the network is analyzed to arrive at fault-tolerant
communication. The first row shows the data routing without
any faulty nodes. The remaining rows show data routing
when there are single/multiple faulty nodes in the network.

In presence of faulty nodes algorithm will find an
alternative path between source and destination nodes.
Alternative paths found are proved to be the optimal routing
in presence of those specific faulty nodes.

5. CONCLUSION AND FUTURE WORK

We have developed a data routing algorithm for a (2, 2, 8)–
torus embedded hypercube network. The analysis and
functioning of the algorithm has been provided with the
situation wherein the network is fault free. Also the case is
considered to support our algorithm with source node of
address 00000 and a destination node of address 01111
communicating each other by considering all combinations
of faulty nodes. A node in torus embedded hypercube
network can tolerate not more than (n-1) faulty nodes, where
n is the node degree and also a non-faulty node will get
disconnected when all its n neighbors become faulty. Though
the algorithm is for a specific (2, 2, 8) network, we feel that
the algorithm can be generalized with some limited
modifications.

REFERENCES

[1] K. Hwang, “Advanced Computer Architecture: Parallelism,
Scalability, Programmability,” New York McGraw-Hill,
(1993).

[2] Hesham El-Rewini and Mostafa Abd-El-Barr, “Advanced
Computer Architecture and Parallel Processing,” John Wiley
& Sons, Inc., Hoboken, New Jersey, (2005).

[3] J. L. Hennessy and D. A. Patterson, “Computer Architecture:
A Quantitative Approach,” 3rd ed., Morgan Kaufmann,
(2005).

[4] Ahmed Louri and Hongki Sung, “An Optical Multi-Mesh
Hypercube: A Scalable Optical Interconnection Network for
Massively Parallel Computing,” Journal of Lightwave
Technology, 12(4), (1994) 704-716.

[5] Ahmed Louri, “Optical Interconnection Networks for
Scalable High-Performance Parallel Computing Systems,”
Optical Interconnects Workshop for High Performance
Computing Oak Ridge, Tennessee, (1999).

[6] Ahmed Louri and Hongki Sung, “A scalable optical
hypercube-based interconnection network for massively
parallel computing,” Applied optics, 33(11) (1994).

[7] Kim Jong-Seok, Lee Hyeong-Ok and Heo Yeong-Nam,
“Embedding Among HCN (n, n), HFN (n, n) and
Hypercube,” Proceedings of Eighth International
Conference on Parallel and Distributed Systems (ICPADS),
533–540, (2001).

[8] Tze Chiang Lee and John P. Hayes, “A Fault-Tolerant
Communication Scheme for Hypercube Computers,” IEEE
Transactions on Computers, 41(10) 1242-1256, (1992).

[9] Jianer Chen, Iyad A. Kanj and Guojun Wang, “Hypercube
Network Fault Tolerance: A Probabilistic Approach,”
Proceedings of the IEEE International Conference on
Parallel Processing (ICPP’02), (2002).

[10] Shih-Chang Wang and Sy-Yen Kuo, “Fault Tolerance in
Hyperbus and Hypercube Multiprocessors Using
Partitioning Scheme,” IEEE International Conference on
Parallel and Distributed Systems, 340-347, (1994).

[11] N. Gopalakrishna Kini, M. Sathish Kumar and
Mruthyunjaya H. S., “Analysis and Comparison of Torus

Table 1
Results of Fault Free Data Routing Path

No. Source Destination Intermediate Nodes Crossed
Node Node with Optimal Path

1 00000 00111 00000�00100�00110�00111�
2 00000 01000 00000�01000
3 00000 01111 00000�00100�00110�00111�

01111

4 00000 10101 00000�00100�00101�10101�
5 00000 11111 00000�00100�00110�00111�

10111�11111

6 11111 00000 11111�11011�11001�11000�
01000�00000

7 01101 00000 01101�01001�01000�00000

equations (1)-(5). If the network do not have any faulty
nodes the algorithm generates dedicated path between any
random source and destination nodes as shown in Table 1.
It is also proved to be the optimal paths.

Table 2
Source Node 00000 Communicating with Destination 01111

No. Introducing Faulty Intermediate Nodes Crossed
Node / Nodes with Optimal Path

1 No Faulty Nodes 00000�00100�00110�00111�
01111

2 00100 00000�00010�00011�01011�
01111

3 00110 00000�00100�00101�01101�
01111

4 00111 00000�00100�00110�01110�
01111

5 00100, 00010 00000�00001�01001�01101�
01111

6 00100, 00010, 00001 00000�01000�01100�01110�
01111

7 00100, 00010, 00001 00000�10000�11000�11100�
01000 11110�11111�01111

8 00100, 00010, 00001 00000�10000�10100�10110�
01000, 11000 10111�00111�01111

9 00100, 00010, 00001 Source Node get Isolated from the
01000, 11000m 10000 destination as there is no way to

establish a communication path.

��� �����	
�
�
����
�����������
���������

����
�������
�
������

COM6\D:\HARESH\11-JITKM

Embedded Hypercube Scalable Interconnection Network
for Parallel Architecture,” International Journal of
Computer Science and Network Security, 9(1), 242-247,
(2009).

[12] N. Gopalakrishna Kini, M. Sathish Kumar and
Mruthyunjaya H. S., “A Torus Embedded Hypercube
Scalable Interconnection Network for Parallel Architecture,”
IEEE Explore Conference Publications, 2009, URL: http://

ieeexplore.ieee.org/xpls/abs_all.jsp?isnumber=4808969 &
arnumber=4809127.

[13] N. Gopalakrishna Kini, M. Sathish Kumar and
Mruthyunjaya H. S., “Design and Comparison of Torus
Embedded Hypercube with Mesh Embedded Hypercube
Interconnection Network,” International Journal of
Information Technology and Knowledge Management, 2(1)
87-90 (2009).

